anti Selectivity in α -Chelation Controlled Hydride Addition to Acyclic Alkoxy Ketone Oximes: Preparation of Chiral Primary anti Amines

Hideo lida, Naoki Yamazaki, and Chihiro Kibayashi*

Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192–03, Japan

Hydride addition to acyclic α -alkoxy and α , β -dialkoxy ketone oximes using aluminium hydride reagents proceeds in an *anti*-selective manner under α -chelation control, providing chiral *anti* amines.

In a recent communication,¹ we reported the total synthesis of the (+)-enantiomer of natural codonopsinine. A serious problem in this synthesis was the occurrence of complete epimerization during the Mitsunobu reaction of the xylo alcohol (1) (R = p-MeOC₆H₄) to yield the phthaloyl derivatives (2) of the expected (4S)-anti amine along with the (4R)-syn amine in a 1:1 ratio, equation (1). At that stage it was not known which was which, though in the event one of these isomers gave (+)-codonopsinine. A simple solution to this problem would be the diastereoselective formation of anti amines via hydride reduction of a C=N group, such as that of an oxime. Stereocontrolled hydride reduction with acyclic carbonyl compounds, such as ketones, has been studied extensively in recent years;² however, little attention has been focused on the reaction with oximes.³ Herein we report hydride addition to α -alkoxy and α , β -dialkoxy ketone oximes proceeding according to an α -chelation model which leads to the formation of chiral anti amines.

We first chose the (S)- α -alkoxy ketone oxime (7) as the substrate, which was prepared in six steps from ethyl L-lactate (3) as shown in Scheme 1. Thus the aldehyde (4) was prepared by a sequence involving methoxymethylation, LiAlH₄ reduction, and Swern oxidation in 53% yield from (3). The Grignard reaction of (4) afforded a chromatographically separable mixture of the alcohols *threo*- and *erythro*-(5) in a 75:25 ratio favouring the *threo*-isomer according to the *anti*-Cram chelation model.⁴ Swern oxidation of the mixture of isomers of (5) yielded the ketone (6) (93%) which was then converted into the oxime (7). Reduction of (7) using a metal hydride such as LiAlH₄ or AlH₃ was found to give predomi-

Scheme 1. Reagents: i, MOMCl, $Pr^{i}_{2}NEt$, $CHCl_{3}$; ii, $LiAlH_{4}$, tetrahydrofuran (THF)-Et₂O, 0°C \rightarrow room temp.; iii, (COCl)₂, Me₂SO, Et₃N, CH₂Cl₂, -78°C; iv, MeMgX, Et₂O, 0°C \rightarrow room temp.; v, NH₂OH·HCl, pyridine, room temp.; vi, LiAlH₄ or AlH₃ (see Table 1); vii, phthalic anhydride, toluene, reflux; viii, phthalimide, diethyl azodicarboxylate, Ph₃P, THF, 0°C \rightarrow room temp.; ix, Zn(BH₄)₂, ether, 0°C \rightarrow room temp.

Table 1. Hydride reduction of α -alkoxy (7) and α , β -dialkoxy (12a-c) ketone oximes.

					Conditions
Entry	Oxime	Reducing agent	Product	anti : syn Ratio ^a (% yield) ^b	Temp. (time/h)
1	(7)	LiAlH₄	(8)	70:30(78)	Room temp. (1)
2	(7)	AlH ₃	(8)	69:31 (70)	Room temp. (1.5)
3	(12a)	LiAIH ₄	(13a)	80:20(71)	Room temp. (1)
4	(12a)	AlH ₃	(13a)	75:25(71)	$0 ^{\circ}\mathrm{C}(0.5) \rightarrow \mathrm{room \ temp.} (1.5)$
5	(12a)	Vitride	(13a)	74:26 (53)	Reflux (0.5)
6	(12a)	DIBAL	(13a)	70:30(13)	Reflux (24)
7	(12b)	LiAlH₄	(13b)	79:21(65)	Room temp. (14)
8	(12b)	AlH ₃	(13b)	77:23 (30)	Reflux (24)
9	(12c)	LiAlH ₄	(13c)	81 : 19 (12)°	Room temp. (1)
10	(12c)	AlH ₃	(13c)	86 : 14 (10)°	Room temp. (1.5)

^a Determined by 400 MHz ¹H n.m.r. spectroscopy. ^b Isolated total yields. ^c Low yields of the products may be due to the accompanying formation of isomeric secondary amine(s) (cf. ref. 6).

Scheme 2. Reagents: i, aluminium hydride reagents (see Table 1); ii, phthalimide, diethyl azodicarboxylate, Ph_3P , THF, $0 \degree C \rightarrow room$ temperature; iii, $NH_2NH_2 \cdot H_2O$, ethanol, reflux.

nantly the *anti*-(8) amine in each case, as presented in Table 1 (entries 1, 2).

The stereochemistry, relative and absolute, of the major product *anti*-(8) was unambiguously determined by correlation with *threo*-(5). *anti*-(8) was then converted by treatment with phthalic anhydride into the phthalimide *anti*-(9), which was identical in all respects with the compound formed by the Mitsunobu reaction of *threo*-(5) with complete stereoinversion. Similarly, the stereochemistry of the minor product *syn*-(8) was confirmed by correlation with *erythro*-(5), which was obtained from ketone (6) by chelation controlled reduction with zinc borohydride^{2,5} with a diastereoselectivity of 79:21.

We extended this methodology to the α,β -dialkoxy ketone oxime (12). Thus the ketones (11), obtained from (10) according to known methods,⁵ were converted into the corresponding oximes (12) (Scheme 2). Reduction of (12) was carried out using a wide variety of metal hydride reagents. The results are summarized in Table 1 (entries 3—10). In all cases hydride addition occurred in an *anti*-selective manner affording predominantly the *anti*-(13) amines, in analogy to the *anti*-selectivity observed for (7). The stereochemistry, including the absolute configuration of the *anti* amine, was confirmed by correlation with *xylo*-(1) obtained in the diastereoselective Grignard reaction of (10). Thus the *anti* phthalimide (14) derived from *xylo*-(1a) by the Mitsunobu method led to *anti*-(13a) by treatment with hydrazine hydrate, which was found to be identical with the sample formed *via* hydride reduction of (12) (Scheme 2).

From the fact that nucleophilic hydride addition occurs in an *anti*-selective manner in both cases (α -alkoxy and α , β -dialkoxy ketone oximes), the direction of nucleophilic addition

is suggested to be controlled by the α - rather than the β -alkoxy group. We believe that the stereoselective transition states involve aluminium complexes in which (**15a**) is favoured over (**15b**), since the latter suffers an unfavourable A^{1,2} strain⁷ between R and R' (Scheme 3). Subsequent hydride addition to the C=N bond in the conformer (**15a**) requires an antiperiplanar alignment between the developing lone pair and the approaching hydride nucleophile (from upper face),⁸ thus generating the (4S) absolute configuration. For the formation of *anti*-(**8**) possessing the opposite configuration (R) with respect to the amino carbon, the same mechanism involving the antipodal transition states [the mirror images of (**15a**) and (**15b**)] should apply.

Received, 24th November 1986; Com. 1664

References

- 1 H. Iida, N. Yamazaki, and C. Kibayashi, *Tetrahedron Lett.*, 1985, 26, 3255.
- 2 T. Oishi and T. Nakata, Acc. Chem. Res., 1984, 17, 338, and references therein.
- 3 (a) K. Narasaka and Y. Ukaji, Chem. Lett., 1984, 147; (b) K. Narasaka, S. Yamazaki, and Y. Ukaji, *ibid.*, 1984, 2065.
- 4 W. C. Still and J. H. MacDonald, III, *Tetrahedron Lett.*, 1980, 21, 1031; (b) W. C. Still and J. A. Schneider, *ibid.*, 1980, 21, 1035.
 5 (a) H. Iida, N. Yamazaki, and C. Kibayashi, *J. Org. Chem.*, 1986,
- 5 (a) H. Iida, N. Yamazaki, and C. Kibayashi, J. Org. Chem., 1986, 51, 1069; (b) H. Iida, N. Yamazaki, and C. Kibayashi, *ibid.*, 1986, 51, 3769.
- 6 M. N. Renick, C. H. Trottier, R. A. Daignault, and J. D. DeFoe, *Tetrahedron Lett.*, 1963, 129.
- 7 F. Johnson, Chem. Rev., 1968, 68, 375.
- 8 S. V. Stevens, Acc. Chem. Res., 1984, 17, 289.